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Excess ion adsorption � induced by the polarization image forces in the system of a metal electrode/
symmetric electrolyte solution separated by an insulating interlayer has been calculated. The adopted theoret-
ical scheme involves the Coulomb Green’s function in a three-layer system with sharp interfaces and specular
reflection at them. The influence of the spatial dispersion of the dielectric permittivities �i�k� in all the three
media on the image force energy Wim and the adsorption � has been analyzed, where k is the wave vector. A
comparison with the classical model, where �i=const, has been carried out. It has been shown that both the
Debye-Hückel ion screening and the spatial dispersion of the solvent contribution �solv�k� to the overall
dielectric function �el�k� of the electrolyte solution lead to the qualitative difference with the results for the
classical model. In particular, in a wide range of ion concentrations n0 a thin interlayer L�5–10 Å effectively
screens out the attractive influence of the metallic electrode, so that the net Coulomb adsorption may become
repulsive. The approach and the results obtained qualitatively describe two physically different situations.
Specifically, the introduced interlayer corresponds either to the dense near-electrode �inner� electrolyte layer or
to the intentionally deposited control coating of arbitrary thickness.

DOI: 10.1103/PhysRevE.73.021606 PACS number�s�: 68.03.�g, 77.22.Ch, 82.45.Un, 68.43.�h

I. INTRODUCTION

The influence of image-force energies at the interfaces
between two plasmalike media, such as metals and electro-
lyte solutions, has been the subject of widespread investiga-
tions for rather a long period �1�, although the role of polar-
ization phenomena is sometimes underestimated �2�. One
should keep in mind that even the well-known simplest,
quoted in textbooks, classical expression for this kind of
electrostatic energy, which describes the case of constant di-
electric permittivities �i’s on either side of the common in-
terface, hides its complicated quantum-mechanical back-
ground �3,4�. When the spatial dispersion of the dielectric
permittivities ��k�’s is accounted for, a further level of com-
plexity arises �5,6�. Here k is the wave vector. The variety of
model ��k� dependences for solvents as hosts for embedded
ions describe rich physics and chemistry both in the bulk of
electrolyte solutions �7–18� and near their interfaces �19–25�
with other plasmalike media.

All this diversity goes back to the Inkson basic interpola-
tion formula

�I�k� = �* +
�0 − �*

1 +
�0

�*
�2k2

, �1�

which was first developed for semiconductors �26� and takes
into account the peculiarities of a test charge ẽ screening by
their bound electrons. Here, �0 is the macroscopic �long-
wavelength� static dielectric constant, �* the short-
wavelength one, and � the correlation length of bound elec-
trons. In the solvent, the constitutive entities are solvent

molecules, but the character of screening is very similar to
that by valence electrons in semiconductors. The parameter
� has now the meaning of the solvent intermolecular corre-
lation length.

At the same time, the dissolved ions give rise to the
Debye-Hückel contribution

�DH�k� =
�0�2

k2 , �2�

where � is the relevant inverse screening radius, so that the
overall dielectric function becomes

��k� = �I�k� + �DH�k� . �3�

Hereafter, for simplicity, we consider only a 1:1 electrolyte
solution, so that � equals �8�n0e2 /kBT�0�1/2, n0 is the bulk
concentration of each kind of ions, e the elementary charge,
T the absolute temperature, and kB the Boltzmann constant.

The dielectric mismatch at the boundary between a metal-
lic �or semiconducting� electrode and an electrolyte solution
may result in the nonmonotonic spatial profile of the image-
force energy Wim in the solution both when the latter is
treated as a plasmalike Debye-Hückel medium �5,27,28� or
described by Eq. �3� �20,29�. Moreover, such a behavior of
the image forces leads to the nonmonotonic concentration
dependence of the excess electrostatic nonspecific adsorption
��n0� and the corresponding excess surface tension �	�n0�
at the point of zero charge �20,27–31�. At the vacuum/
electrolyte solution interface, on the contrary, the respective
concentration dependences ��n0� and �	�n0� are monotonic
�32�.

The results cited above were obtained using the abrupt
interface model and assuming the specular quasiparticle re-
flection at the medium interfaces �33–35�. In actual truth,
however, the metal electrons spill out over the positive back-*Electronic address: collphen@iop.kiev.ua
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ground edge into the electrolyte solution, making the dielec-
tric characteristics highly inhomogeneous �36�, so that the
important problem of the electrochemical contact capacity
requires more involved approaches �37�. At the same time,
while calculating such integral properties as the electrostatic
excess adsorption, the degree of the interface diffusivity be-
comes less important �see a comparison between different
kinds of the dielectric approximations �38��.

On the other hand, according to the totality of experimen-
tal data and dominating theoretical ideas, the electrolyte so-
lution can be divided into a dense near-electrode �inner� elec-
trolyte layer and a diffusive �outer� one evolving into the
bulk of the solution �36,39�. To make allowance for the
dense near-electrode shell, it is necessary to consider a three-
layer rather than a two-layer system, with different dielectric
characteristics inherent to each medium involved. An inter-
layer theoretically introduced in that way may also describe a
thin insulating coating, intentionally deposited on the metal
to control the physical adsorption. Then, notwithstanding the
high polarizability of a metal, one could even change the
adsorption sign.

Thus, in this paper we calculated the image-force energy
Wim and the electrostatic contribution to the nonspecific ion
adsorption ��n0� in a three-layer electrochemical system.
The spatial dispersion of the medium dielectric permittivities
was accounted for. In doing so, we used the general approach
elaborated earlier �34,40,41�.

Knowing the profile of the image-force energy in three-
layer structures is important, because it is the input quantity
in solving many electrochemical, biological, and solid-state
issues. First of all, we mean standard electrochemical cells:
metallic electrode–dense layer–outer layer, although the
crossover between last two media is gradual �36,39�. In other
systems, both interfaces are well defined. In particular, our
theory is applicable to semiconductor heterostructures
�42–45�, to metal-oxide-semiconductor structures �46–49�,
to lamellar systems, where an electrolyte solution is confined
between dielectric covers �lipid membranes, in particular�
�22,24,50–56�, or to a liquid crystal �LC� lipid membrane
surrounded by two electrolyte solutions �57,58�.

One can indicate another very important area of applica-
tion of the three-layer image-force theory developed here.
We have in view electro-optics and nonlinear-optics LC de-
vices �LCDs�, e.g., optical switchers and photorefraction de-
vices �59�. The matter is that LCs, as other organic liquids,
are weak electrolytes and contain ions which interact elec-
trostatically with the polymer aligning layers covering me-
tallic electrodes in LC cells. The amorphous tungsten triox-
ide WO3 may also be a building material for asymmetric
nematic LC cells �60,61�. As a consequence of the electro-
static interaction, a nonspecific physical adsorption of
charged particles arises �20,27–32,62–70�, which leads to the
formation of a charged surface layer partially compensating
the applied electric field in the bulk of the LC. The energy
Wim makes the main contribution ��n0� to this kind of ad-
sorption and hence governs transport processes in LC cells
and operational properties of the latter.

It should be noted that the very choice of the Inkson-like
description �I�k� of the solvent screening ability is not cru-
cial. Actually, the interpolation character of �I�k� reflects

only its being a bridge between the proper long-wavelength
and short-wavelength limits. The true dielectric function of
the solvent may be quite different, although these asymptotic
limits should be retained in any case. For instance, in the
case of solid semiconductors, Schulze and Unger �71� modi-
fied �I�k� in such a way that their modification �SU�k� differs
from the former for large k. Namely, �SU�k� falls off as �k−4

at large k. Such a choice is a consequence of the following
quantum-mechanical arguments. Since the response of any
valence electron to a test charge at extremely small distances
between them does not depend on existing molecular bonds,
screening of the test charge by bound electrons should coin-
cide with that by the free electron gas. On the other hand, the
screening by free electrons should reflect the quantum nature
of the degenerate electrons in the limit of large k �72,73�,
where the semiclassical Thomas-Fermi description fails.
Hence, the advantages of �SU�k� over the basic �I�k� are the
same as the superiority of the Lindhard dielectric function
over its Thomas-Fermi counterpart.

It is remarkable that the usage of �SU�k� instead of �I�k�
improves the behavior of image forces near the
semiconductor-vacuum interface, so that not only the image-
force energy but also the force itself do not diverge �74,75�.
Nevertheless, the deviations are conspicuous only within a
thin layer 
�, whereas the adsorption �, which is the quan-
tity of interest here, constitutes an integral over all distances
�see Eq. �14��. Therefore, it is not essentially altered by the
quantum-mechanical correction to the image forces, although
the latter is very important per se. It means that the qualita-
tive features of ��n0� found below including its nonmono-
tonic character would survive the replacement of �I�k� by
�SU�k� or any other approximation formula of that kind.

The discussion so far concerned only a class of solvent
dielectric functions monotonic in k-space. At the same
time, some speculations exist, according to which more com-
plex forms of ��k� may occur including k intervals with
��k��0 �11,12�. This overscreening �14� is a very interest-
ing possibility that arises when local-field effects �76,77� are
extremely strong; any general principle is not violated in this
case. At the same time, the actual limitations on the proper
response function �−1�k ,�� do exist and agree with the Le
Chatelier-Braun principle, according to which the response
of a stable system to a perturbation reduces the action of the
latter �78,79�. Recent calculations �18� show that the corre-
sponding oscillations of the electrostatic potential in the in-
terfacial water might explain the analogous experimental
data in certain biological objects �56�, hydrophilic cleavage
planes of the calcite and barite ionic crystals �55�, and the
mica�001�-water interface �80�. Such intriguing cases are left
beyond the scope of this paper dealing with more conven-
tional and typical situations.

The scheme of the article is as follows. The formulation
of the problem is outlined in Sec. II. Section III is devoted to
numerical calculations and the relevant discussion. The con-
clusions are contained in Sec. IV.

II. FORMULATION

We consider a three-layer system, with each constituting
medium �i=1,2 ,3� described by a bulk dielectric function
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�i�k� �see Fig. 1�. The semi-infinite covers of the sandwich
are the metal electrode and the symmetric 1:1 electrolyte
solution, while the interlayer represents either the dense
�Helmholtz� layer or a thin-film electrode coating. Hereafter,
we also use the sub- or superscripts m, int, el, and solv for
the metallic electrode, the interlayer, the electrolyte solution,
and the solvent background, respectively, where needed. The
Coulomb energy of a charge e in every medium can be found
by the conventional procedure of solving the Poisson equa-
tions and matching the solutions at specularly reflecting
smooth plane interfaces �34,40,41�. Since the concrete calcu-
lations concern only the electrolyte solution �i=1�, all the
expressions below for Coulomb energies correspond to this
medium. Therefore, in subsequent formulas the medium-
characterizing subscript is indicated only in the cases when it
is necessary for clarity.

The total Coulomb energy of an ion with the unitary
charge ±e in the 1:1 solution �medium 1� is given by the
formula

WCoul�x� = − e2�
0




qdq�D�q;x,x� +
1

2q�1�k → 
�� . �4�

Here, �1�k→
� is the short-wave limit of the solution dielec-
tric permittivity, which is, strictly speaking, equal to unity,
since screening disappears at short distances. Nevertheless,
we shall retain the expression �1�k→
�, first, for generality,
and, second, because this parameter enters into various
model approximation formulas for ��k� and thus may deviate
from unity. The function D�q ;x ,x�=limx�→x D�q ;x ,x��,
where D�q ;x ,x�� is the Green’s function of the self-
consistent electromagnetic field �34,40,41,81�, and is the
functional of the bulk dielectric functions �i�k� of the media
involved

D�q;x,x� =
a1

2�q,x�
B�q�

�aS�q,0� + aA�q,0� + 2a3�q,L��

− b1�q;x,x� , �5�

a1�q,x� =
1

�
�

−



 dk�eik�x

�k�
2 + q2��1�k�,q�

, �6�

a3�q,x� =
1

�
�

−



 dk� exp�ik��x − L��
�k�

2 + q2��3�k�,q�
, �7�

aS,A�q,x� =
2

L
	
k�

S,A

exp�ik�x�
�k�

2 + q2��2�k�,q�
, �8�

k2 = q2 + k�
2 , k�

S = 2n
�

L
, k�

A = �2n + 1�
�

L
,

n = 0, ± 1, ± 2, . . . , �9�

b1�q;x,x�� =
1

2
�a1�q,x + x�� + a1�q,x − x��� , �10�

B�q� = �aS�q,0� + a1�q,0���aA�q,0� + a3�q,L�� + �aS�q,0�

+ a3�q,L���aA�q,0� + a1�q,0�� . �11�

Here, L is the thickness of the near-electrode layer. It should
be noted that the very existence of blocks �6�–�8� is the con-
sequence of our assumption that quasiparticles are reflected
specularly at the interfaces.

It is precisely the quantity WCoul�x� rather than the related
image-force energy Wim�x� �see below� that is continuous
across the medium boundaries, if the proper limits
�i�k→
�=1 take place. �This subtle issue was discussed at
length in Refs. �27,28�. On the other hand, in the important
paper �Ref. �40���, both energies were confused, although the
starting formulas were correct there.� The electrostatic polar-
ization energy WCoul�x� consists of two terms: WCoul�x�
=Wbulk+Wim�x�. The first one, Wbulk, is a homogeneous po-
larization energy of the test charge in the bulk of the solu-
tion. It can be easily derived from Eq. �4� by switching off all
the effects that are induced by the adjacent media �the elec-
trode and the interlayer�,

Wbulk = − e2�
0




qdq� lim
x→


D�q;x,x� +
1

2q�1�k → 
�� .

�12�

In essence, it is a difference between the infinite charge self-
energy in the medium concerned with all spatial-dispersion
effects of the respective dielectric function switched off and
the infinite energy of the shielding cloud. The second com-
ponent, Wim�x�, is due to the existence and charge polariza-
tion of other media. Naturally, the item depends on the
charge position x relative to the medium interfaces. This
quantity is called the image force energy Wim�x� and can be
found by subtracting Wbulk from the total Coulomb energy
WCoul�x�,

Wim�x� 
 WCoul�x� − Wbulk = − e2�
0




qdq�D�q;x,x�

− lim
x→


D�q;x,x�� = − e2�
0




qdq�a1
2�q,x�
B�q�

� �aS�q,0� + aA�q,0� + 2a3�q,L�� −
1

2
a1�q,2x�� .

�13�

FIG. 1. Three-layer sandwich: electrode–interlayer–electrolyte
solution.
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Even if all the relevant dielectric permittivities satisfy
the limit �i�k→
�=1, we have Wim,el�L+0��Wim,int�L−0�
and Wim,int�+0��Wim,m�−0�, because the bulk polarization
energies are different for each medium. The quantity Wim�x�
derived in this manner is the analog of the image-force en-
ergy obtained for the case of only one interface by the Gün-
telberg charging method �82�.

The image forces lead to the enrichment or depletion of
the electrolyte surface shell in dissolved ions
�20,27–32,83,84�. The corresponding extra electrostatic ad-
sorption for each ion species is given as follows:

� = n0�
0




dx�exp
−
Wim�x�

kBT
� − 1� . �14�

The overall electrostatic adsorption is twice as much as that
given by Eq. �14�. As has already been indicated in the In-
troduction, the adopted approach is a simplification because
it neglects the interface roughness �85,86� and the complex

structure of the double layer �2,19,25,36,37�. Nevertheless, it
gives a useful insight into the problem and allows one to
estimate the magnitude of possible effects.

III. CALCULATIONS

A. Dispersionless (classical) dielectric permittivities

It is instructive to consider first the classical case of
constant permittivities �i in all the three media. Then, substi-
tuting Eqs. �6�–�8�, into integral �13�, one easily obtains the
following expression for the image-force energy in
medium 1:

Wim�x� = −
e2

4�1

�3 − �1

�3 + �1
�1

x
− I1�x�� , �15�

where

I1�x� = 4
�1

�2

�2
2 − �3

2

�1
2 − �3

2�
0


 dqe−2qx tanh�qL�

1 +
�2

�3 + �1

1 +

�3�1

�2
2 �tanh�qL�

.

�16�

Isolating the x−1-term from integral �16�, we arrive at the
expression

FIG. 2. Image-force energy profiles Wim�x� for a unit charge in
the 1:1 Debye-Hückel electrolyte ion �a dispersionless solvent di-
electric permittivity, �0

solv=const� and various concentrations n0,
separated from a classical metallic electrode ��m

0 =
� by an insulat-
ing interlayer ��0

int=const�. The so-called neutral case �0
int=�0

solv=5.
The interlayer thickness L=5 Å. The ion concentration n0=0
�solid�, 1018 �dashed�, 1019 �dotted�, and 1020 cm−3 �dotted-dashed
curve�.

FIG. 3. The same as in Fig. 2 but for the attractive case
�0

int��0
solv ��0

int=5, �0
solv=3�. L=5 Å. n0=0 �solid�, 1018 �dashed�,

and 1019 cm−3 �dotted curve�.

FIG. 4. The same as in Fig. 2 but for the repulsive case
�0

int��0
solv ��0

int=5, �0
solv=8�. L=5 Å. n0=0 �solid�, 1018 �dashed�,

and 1019 cm−3 �dotted curve�.

FIG. 5. Dependences of the excess surface adsorption � on
the 1:1 Debye-Hückel electrolyte solution ion concentration n0

in the system classical metallic electrode–interlayer with a constant
dielectric permittivity–solvent with a constant dielectric
permittivity for various �0

solv��0
int �a repulsive interlayer�. L=5 Å,

�0
int=5. �0

solv=5 �solid�, 6 �dashed�, and 8 �dotted curve�.

GABOVICH, REZNIKOV, AND VOITENKO PHYSICAL REVIEW E 73, 021606 �2006�

021606-4



Wim�x� = −
e2

4�1x

�2 − �1

�2 + �1
+ I2�x� , �17�

where

I2�x� =
e2��2 − �3�

��1 + �2���3 + �1�

� �
0


 dqe−2qx�1 − tanh�qL��

1 +
�2

�3 + �1

1 +

�3�1

�2
2 �tanh�qL�

�18�

Integral �18� is finite at any x�0, so at x→0 the augend in
expression �17� dominates for any values of the parameters
�i. Thus, without regard to the particular �3 �electrode� di-
electric constant, the sign of the Wim�x� function near the
solution/interlayer boundary and, to some extent, the charac-
ter of the excess adsorption are determined by the relation-
ship between �1 and �2. In accordance with this relation, we
may classify their possible combinations as attractive ��1

��2�, repulsive ��1��2�, and neutral ��1=�2� ones. In the
case �2=�1, the first term in expression �17� vanishes, and
integral �18� is calculated exactly, so that

Wim�x � 0� = −
e2

4�1�x + L�
�3 − �1

�3 + �1
, �19�

as it has to be, because the interlayer becomes electrostati-
cally indistinguishable from the solution. In the case �2=�3,
i.e., if the interlayer can be considered as a continuation of
the electrode, integral I1�x� in �15� vanishes, and

Wim�x� = −
e2

4�1x

�3 − �1

�3 + �1
. �20�

In other words, one may view the electrostatic effect of
the three-layer system �Fig. 1� on a charge located in me-
dium 1 in a twofold manner. First, the three-layer system
may be regarded as a two-layer one, composed of two semi-
infinite covers �media 1 and 3� and modified by the insertion
of an interlayer �medium 2� between them. According to this
interpretation, Wim�x� can be easily recognized as the classi-
cal image-force energy �19� caused by the dielectric mis-

FIG. 6. The same as in Fig. 5 but for the model of ion-free
near-electrode interlayer: �0

solv=�0
int=3 �solid�, 5 �dashed�, and 8

�dotted curve�. L=5 Å.

FIG. 7. The same as in Fig. 6 but for L=10 Å.

FIG. 8. Image-force energy profiles Wim�x� for a unit charge in
the 1:1 Debye-Hückel electrolyte solutions separated from a classi-
cal metallic electrode ��m

0 =
� by an insulating interlayer with
L=10 Å for various ion concentrations n0=0 �solid�, 1016 �dashed�,
1017 �dotted�, 1018 �dotted-dashed�, and 1019 cm−3 �dotted-dotted-
dashed curve�. The spatial dispersion of dielectric permittivity is
taken into account both for the interlayer and
the solvent. The parameters are �0

int=10, �0
solv=3 ��0

int��0
solv�,

�int=5 Å, and �solv=7 Å ��int��solv�. Note the attractive relation-
ship between the dielectric long-wavelength constants �0

int and �0
solv.

FIG. 9. The same as in Fig. 8 but for �solv=3 Å and
�int=5 Å ��solv��int�. n0=0 �solid�, 1016 �dashed�, 1017 �dotted�,
1018 �dotted-dashed�, 1019 �dotted-dotted-dashed curve�, and
1020 cm−3 �short-dashed curve�.
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match between cover media 1 and 3 and screened by the
induced polarization in slab 2. But since charges in the
slab interact not only with their counterparts in cover 1 but
also with those in cover 3, the latter modifies the screening
ability of the charges in medium 2 as well. It is evident that
for L→0 this modification disappears.

According to the second point of view �Eq. �17��, the
system is composed of two formally semi-infinite covers
�media 1 and 2�, but the dielectric response of medium 2
�interlayer� is modified by the existence of the electrode �me-
dium 3�. It is worth noting that the image force energy in
three-layer systems with constant �i’s has been examined in
different contexts �46–48,87,88�. An explicit analytical ex-
pression for Wim�x� in the outermost layer, similar to Eq. �15�
�but in another form�, has been introduced for the first time,
as far as we know, in Ref. �87�.

If metal 3 is treated as an ideal conductor ��3→
�, ex-
pression �15� can be simplified further as follows:

Wim�x� = −
e2

2�1
�

0




dqe−2qx

1 −
�1

�2
tanh�qL�

1 +
�1

�2
tanh�qL�

. �21�

Of course, the textbook result −e2 / �4�1x� stems from Eq.
�21� when L→0.

The very presence of the interlayer �even when it is a
comparatively thin film� shifts the metallic medium away to
the position where the distinction between any specific elec-
trode and the ideal conducting half-space becomes negli-
gible. Indeed, roughly speaking, the electron gas spills out
over a distance of the order of the Thomas-Fermi length LTF
�36,89,90�. Therefore, for typical metallic electrode materials
and L�5 Å�LTF, the inhomogeneous distribution of elec-
trons both inside and outside the electrode will not affect the
metal polarization drastically under the influence of an elec-
trolyte’s ion charge. It means that medium 3 �the electrode�
can be regarded as an ideal conductor with �0

m=
. Therefore,
to avoid cumbersome although insignificant details of the
metal screening ability, we shall confine ourselves to this
case in the following sections. One should keep in mind,
however, that the double-layer structure and the electric ca-
pacity do depend on the nonhomogeneous character of the
metal-solution interface and are determined by all constitu-
ents of the three-layer sandwich �37�.

B. Dispersionless solvent and interlayer dielectric functions

Taking into account the spatial dispersion of dielectric
permittivities of the media prohibits from obtaining most re-
sults in the analytical form. Some of them for a two-layer
system can be found in other works �20,29–31�. For the

FIG. 10. The same as in Fig. 9 but for �0
int=3 and �0

solv=10
��0

int��0
solv�. n0=0 �solid�, 1016 �dashed�, 1017 �dotted�, and

1019 cm−3 �dotted-dashed curve�.

FIG. 11. The same as in Fig. 10 but for �solv=7 Å and
�int=5 Å ��solv��int�. n0=0 �solid�, 1017 �dashed�, 1018 �dotted�,
and 1019 cm−3 �dotted-dashed curve�.

FIG. 12. Image-force energy profiles Wim�x� at �int=�solv

=5 Å, �0
int=3, �0

solv=10 ��0
int��0

solv�, and n0=1018 cm−3 for various
interlayer thicknesses L=5 �solid�, 10 �dashed�, and 100 Å �dotted
curve�.

FIG. 13. The same as in Fig. 12 but for n0=0. L=5 �solid�, 10
�dashed�, 30 �dotted�, and 100 Å �dotted-dashed curve�.
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three-layer system, the situation is much more involved, so
we present below only numerical results.

Now, consider the case where the screening is provided
by the solute ions, while the solvent and the interlayer are
supposed dispersionless. Another approximation used hereaf-
ter throughout the whole paper consists in the lack of self-
consistency for all calculations. Specifically, the inverse De-
bye screening radius � is considered constant up to the
electrolyte solution border, whereas � itself should be influ-
enced by the image forces. A self-consistent approach was
used, e.g., for the computation of the surface tension at the
electrolyte solution/vacuum interface �83� �Onsager-Samaras
problem �32��. The obtained series converged rapidly, and
the overall correction was found to be small. The depen-
dences Wim�x� for L=5 Å and the neutral combination
�0

int=�0
solv=5 are shown in Fig. 2 for certain bulk ion concen-

trations n0. Such a situation simulates a conventional electro-
lytic cell �36,39� with the dense and the diffuse layers having
the same background dielectric constant of the solvent,
whereas ions do not penetrate into the dense layer.

All the curves do not diverge at the plane x=0, because
the classical electrode is moved away and there is no short-
wave dielectric mismatch between the solution and the inter-
layer. At the same time, the attraction moderated by the in-
terlayer gives place to the repulsion due to the effective
increase of the dielectric permittivity �el�k�=�0

solv+�DH�k�
induced by the ionic plasmalike contribution �DH�k� �see Eq.
�3��.

On the other hand, if �0
int��0

solv �the attractive combina-
tion�, the ion contribution can not overcome the attraction
both to the faraway metal and the adjacent interlayer in the
near-layer region, as is demonstrated in Fig. 3. The image-
force potential Wim�x� diverges in this case as −1/x, so that
the adsorption calculated by Eq. �14� becomes infinitely
high.

In the opposite case, when �0
int��0

solv �the repulsive com-
bination�, the polarized metallic electrode is shielded in the
neighborhood of even a thin interlayer, where Wim�x��0,
while the metal controls the behavior of the image forces in
the bulk of the electrolyte solution, where Wim�x��0. It is
clearly seen from Fig. 4 for n0=0. However, contrary to
what is depicted in Fig. 3, a rise of the ion concentration n0
gradually suppresses the negative branch of Wim�x� shown in
Fig. 4.

Provided such a complex spatial behavior of the image-
force energy, it is difficult to predict a priori the relationship
between the polarization-induced excess adsorption �, on the
one hand, and the ion concentration n0 or the screening pa-
rameters of the media involved, on the other hand. In fact,
our specific calculations confirm the nontrivial character of
the function ��n0�. In Fig. 5, the curves ��n0� are demon-
strated for a nominally electrostatically repulsive interlayer

FIG. 14. The same as in Fig. 12 but for �0
int=10 and �0

solv=3
��0

int��0
solv�. L=5 �solid�, 10 �dashed�, and 100 Å �dotted curve�.

FIG. 15. The same as in Fig. 14 but for n0=0. L=5 �solid�, 10
�dashed�, and 100 Å �dotted curve�.

FIG. 16. The excess adsorption ��n0� calculated when the spa-
tial dispersion of the dielectric permittivities of the solvent and
interlayer is not taken ��int=�solv=0, solid curve� and taken
��int=�solv=2 �dashed� and 5 Å �dotted curve�� into account.
�0

int=�0
solv=5, L=5 Å.

FIG. 17. A scaled-up section of Fig. 16 for small concentra-
tions n0.
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with �0
int��0

solv and thickness L=5 Å. One can see that even
for a substantial overshoot of �0

solv with respect to �0
int, the

adsorption remains positive for low enough n0.
The nonmonotonic form of ��n0�, appropriate to the case
�0

int=�0
solv
�0=5 and depicted in Fig. 5 �solid curve�, sur-

vives for other values of the common dielectric constant �0.
This is readily seen from Fig. 6.

The attractive influence of the metal is severely weakened
with increasing L. This trend can be inferred from the com-
parison of the dependences displayed in Figs. 6 and 7 calcu-
lated for the same values of �0

int=�0
solv. We see that for

L=10 Å the amplitudes of the maxima of the curves ��n0�
are an order of magnitude smaller than their counterparts for
L=5 Å. Moreover, a transition to the negative values of
��n0� happens at lower n0 if L increases.

C. Solvent and interlayer dielectric functions with spatial
dispersion

The noticed tendency seems quite natural from general
considerations, but one should bear in mind that the actual
dielectric permittivities are by no means dielectric constants.
Therefore, hereafter, we describe the permittivities by the
interpolation formula �3�. We should emphasize that in the
sharp interface model, which is used in this work, the image-
force potential in the nearest vicinity of the interface is de-

termined just by the shortwave screening parameters �*
int and

�*
solv. In this region, they play the roles of effective dielectric

constants and define whether the profile of the image force
energy has a divergence or not. In this connection, we con-
fine ourselves to the “asymptotically neutral case,” i.e., the
background �long-wave� constants �0

int and �0
solv will be var-

ied, whereas both short-wavelength ones �*
int and �*

solv will be
set equal to unity.

The dependences of the image force energy Wim�x� for the
case �0

int��0
solv are depicted in Fig. 8. We remind the reader

that in the constant permittivity approximation, ions, at an
arbitrary n0�0, are attracted by the interface in such a way
that the excess adsorption becomes infinitely high �see Fig.
3�. On the contrary, the integral in Eq. �13� converges at
large q for any x, so that the overall attraction due to the
dielectric mismatch is weakened in comparison to the dielec-
tric constant case, and the Debye-Hückel screening contribu-
tion leads even to the repulsion at small distances. The
curves shown in Fig. 8 were obtained for �int=5��solv=7.
If the opposite relationship takes place ��int=5��solv=3�,
the ion screening may change the sign of the polarization
force energy into the positive one within the whole relevant
range of x, as is shown in Fig. 9. Note that for both previous
figures, �0

int=10, �0
solv=3, and L=10 Å.

For the same solvent correlation lengths �int and �solv as
in Fig. 9 but the repulsive combination of the background
dielectric constants ��0

int=3 and �0
solv=10�, the function

Wim�x� changes its sign at x�32.5 Å for the zero ion con-

FIG. 18. The excess adsorption ��n0� calculated when the
spatial dispersion of the dielectric permittivities of both the solvent
and the interlayer is taken into account �the case �0

int=�0
solv=5� for

various �int=4.5 �solid�, 5 �dashed�, and 5.5 Å �dotted curve�.
�solv=5 Å, L=5 Å.

FIG. 19. The same as in Fig. 18 but for various �solv=4.5
�solid�, 5 �dashed�, and 5.5 Å �dotted curve�. �int=5 Å.

FIG. 20. The same as in Fig. 19 but for �0
int=3 and �0

solv=10
��0

int��0
solv�. L=10 Å, �int=5 Å. �solv=3 �solid�, 5 �dashed�, and

7 Å �dotted curve�.

FIG. 21. The same as in Fig. 19 but for �0
int=10 and �0

solv=3
��0

int��0
solv�. L=10 Å, �int=5 Å. �solv=4.9 �solid�, 5 �dashed�, and

5.1 Å �dotted curve�.
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centration n0. It can be seen from Fig. 10. As n0 increases,
the polarization energy becomes completely repulsive. On
the other hand, as stems from Fig. 11, the dependences
Wim�x� have maxima at concentration-dependent distances x.

It is reasonable that the form of Wim�x� depends crucially
on the separating interlayer thickness L. For instance, if
�int=�solv=5 Å, n0=1018 cm−3, �0

int=3, and �0
solv=10, all pe-

culiarities of the repulsive curve Wim�x� observed at L=5 Å
are wiped out at larger L �see Fig. 12�. For n0=0 and the
same values of the other parameters, the curve Wim�x�
changes its sign if L=5 Å but becomes entirely repulsive for
larger L, as can be readily seen from Fig. 13.

The same trend of the rapid reduction of the metallic elec-
trode influence by the increase of L can be inferred from
Figs. 14 and 15 plotted for �0

int=10 and �0
solv=3.

The behavior of the image-force energy Wim�x� in the
setup discussed markedly depends on several parameters.
The number of those parameters is even larger than in the
constant-dielectric case. That is why it is impossible to pre-
dict even the sign of the electrostatic adsorption �, to say
nothing of its amplitude, a priori. Let us consider, e.g., the
case of equal model parameters for the bulk of the electrolyte
solution and the interlayer, the only difference being the dis-
solved ions absent from the interlayer �see Fig. 16�. As
stems from this figure, even in this simplest case, the ap-
proximations of the dielectric constants ��int=�solv=0� and
dielectric functions lead to quite different results for ��n0�.
The same dependence is shown in Fig. 17 on a larger scale

for small n0. One sees that all curves have maxima at some
n0 and the sign of � becomes negative for realistic values of
�int=�solv�5 Å and n0�1018 cm−3. It means that the
very existence of a thin solvent layer inaccessible to ions
leads to the net electrostatic polarization-induced repulsion at
the interface.

The whole picture is extremely sensitive to the values of
�int and �solv, which by no means should coincide exactly.
This is illustrated by Figs. 18 and 19.

If �0
int��0

solv, the electrostatic adsorption � is not neces-
sarily negative. The relationship between �int and �solv
should also be made allowance for, as one can see from Fig.
20. Namely, for �solv��int, the sign of � becomes ambigu-
ous. Numerically, ��n0� is sensitive to the ratio �int /�solv

also in the case when �0
int��0

solv �see Fig. 21�.
The dependences of � on the interlayer thickness L for

two fixed ion concentrations n0 are shown in Figs. 22 and 23.
All the curves have the same character, the dependences be-
ing steep for small and saturating for large L. One can see
that the dielectric-constant approximation fails in the quanti-
tative description of ��L�. But the main conclusion is that for
correctly simulated dielectric properties of the electrolyte so-
lution �3�, the attractive influence of the highly polarized
metal is effectively screened by thick enough insulating in-
terlayers, whatever the relationship between �0

int and �0
solv.

So far we have dealt with solvents characterized by rela-
tively small dielectric constants �0

solv. At the same time, ef-
fective solvents usually possess much larger �0

solv. For in-
stance, �0

solv=78 for water, and various alcohols possess �0
solv

in the range 15–50 �91�. It turns out that all the trends re-
ported above preserve also for much larger �0

solv. Figure 24,
where the dependences ��n0� are presented for different
3��0

solv�80 and the interlayer dielectric constant �0
int=5, is

an apt illustration of this statement.

IV. CONCLUSIONS

Using the electrostatic method with allowance for spatial
dispersion of the dielectric permittivities �34,40,41�, we have

FIG. 22. The dependences ��L� at n0=1018 cm−3, �0
solv=5, and

for various �0
int=3 �solid�, 5 �dashed�, and 8 �dotted curve�. Curves

with circles correspond to �int=�solv=0, and curves without circles
to �int=�solv=5 Å.

FIG. 23. The same as in Fig. 22 but for n0=1019 cm−3.

FIG. 24. The dependences ��n0� at the interface between a
metal electrode covered with a dielectric layer and a 1:1 electrolyte
solution for various background dielectric permittivities of the sol-
vent �0

solv=3 �solid�, 5 �dashed�, 25 �dotted�, 50 �dotted-dashed�,
and 80 �dotted-dotted-dashed curve�. L=10 Å, �solv=3 Å, �0

int=5,
and �int=5 Å.
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carried out the investigation of image forces and the nonspe-
cific ion Coulomb adsorption in electrolyte solutions near
metal electrodes. The analysis has shown that the existence
even of a very thin interlayer �with the thickness L compa-
rable to an ion size� between a solution and an electrode can
drastically reduce the polarization-induced ion attraction to
the metal. Hence, the magnitude and even the sign of the
extra adsorption � may change. In particular, if the dielectric
constant of the interlayer �0

int is smaller than that of the sol-
vent �0

solv, the attraction transforms into a repulsion, espe-
cially for large ion concentrations n0. Our calculations have
demonstrated that the proper account of the spatial disper-
sion for both dielectric permittivities �int�k� and �solv�k� is
necessary to obtain a correct result, whereas the constant
approximation for �int�k� and �solv�k� is a very crude one.

Strictly speaking, the near-electrode layer with the dielec-
tric �screening� properties different from those in the bulk of
the solution always exists, e.g., as the dense inner layer of
the Gouy-Chapman theory �2,36,37,39�. Our calculations
with L�5 Å simulated this situation. The opposite case of
the artificially deposited on the electrode interlayer of an
arbitrary thickness is more interesting because this interlayer
may serve as a powerful tool to control the physical adsorp-
tion in the electrochemical cells. At large n0, the excess Cou-
lomb nonspecific adsorption � may constitute an appreciable
part of the total adsorption.

The developed theory for the image-force energy Wim can
be applied to any three-layer system with solid or liquid
constituents and makes it possible to estimate the validity of
the simple dielectric-constant approximation often used in
literature. As for the results concerning ��n0�, they describe
electrochemical cells, where the role of the inner layer is
essential or the electrode is covered by an additional dielec-
tric layer.

LCDs can be considered as the most important objects to
be analyzed on the basis of the elaborated concept because
many of their properties are influenced by electrodynamic
processes taking place in the electrode neighborhood. Par-
ticularly, in LC cells spontaneous and electrically induced
ion adsorption results in the strong increase of the driving
voltage for various electro-optical LCDs �59�. The adsorbed
ions form the charged shield, responsible for the residual
image of the previous frame, which often survives on a liq-
uid crystal display �the so-called sticking effect� �92,93�.
This phenomenon may strongly impair the quality of LCDs
and needs to be diminished. At the same time, light-induced
changes of the adsorbed current-carrier concentration in the

electrolyte-plasma double layer near the interface govern the
recording of photorefractive gratings in LCs and allow the
development of optically controlled switchers �94�.

In the case when there are additional polymer layers on
various dielectric or metallic substrates, the influence of the
dissolved ions on anchoring of LC molecules was studied by
several groups �61,64,66,95–108�. However, the causes of
the ion adsorption considered in those papers did not include
the dielectric mismatch between the adjacent constituting
layers and, as a consequence, did not make allowance for the
image forces. To our knowledge, there are only two papers
where the latter were referred to.

In the first one �64�, the adsorption energy of the positive
ions was identified with the classical image-force energy
truncated at the distance equal to the radius of the adsorbed
positive ion. This may be regarded as an estimation only.
Moreover, the very concept of the selective adsorption in
Ref. �64�, totally neglecting the negative ion contribution to
�, differs from our purely electrostatic approach, where posi-
tive and negative charges are treated on equal footing and
their contributions to � have the same values for symmetrical
electrolytes. In the second work of the same group �61�, a
decrease of the anchoring strength under the influence of the
ultraviolet illumination was interpreted in terms of classical
image forces between dipoles, the latter differing for trans-
and cis-isomers.

Since the calculations presented above clearly show the
sensitivity of the electrostatic adsorption � to the account of
the spatial dispersion for the relevant dielectric functions, we
think that properly treated image forces in two- or three-layer
geometry should always be taken into account for charged
particle adsorption in LC and organic liquid electrochemical
cells. Nevertheless, amazingly, the dielectric mismatch at the
boundaries have been out of consideration so far while treat-
ing many problems in LCDs even in the classical approxi-
mation. At the same time, a typical LC cell consists of a
glass substrate covered with a highly conductive electrode,
which in turn is covered with a thin polymer layer, and just
the mismatch between dielectric functions for these three
media crucially governs the distribution of ions near the
polymer surface. This paper may be considered as a step in
the outlined direction.
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